Standards Map

Mathematics > Grade 8 > Expressions and Equations

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Mathematics | Grade : 8

Domain - Expressions and Equations

Cluster - Work with radicals and integer exponents.

[8.EE.A.4] - Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.


Resources:


  • Decimal number
    Any real number expressed in base ten notation, such as 2.673.
  • Scientific notation
    A widely used floating-point system in which numbers are expressed as products consisting of a number between 1 and 10 multiplied by an appropriate power of 10, e.g., 562 = 5.62 x 102.

Predecessor Standards:

  • 7.EE.B.3
    Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.

Successor Standards:

  • AI.N-Q.A.1
    Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*
  • GEO.N-Q.A.3.a
    Describe the effects of approximate error in measurement and rounding on measurements and on computed values from measurements. Identify significant figures in recorded measures and computed values based on the context given and the precision of the tools used to measure.*
  • MI.N-Q.A.1
    Use units as a way to understand problems; and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*
  • MII.N-Q.A.3.a
    Describe the effects of approximate error in measurement and rounding on measurements and on computed values from measurements. Identify significant figures in recorded measures and computed values based on the context given and the precision of the tools used to measure
  • HS.ESS.1.2
    Describe the astronomical evidence for the Big Bang theory, including the red shift of light from the motion of distant galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases, which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).
  • HS.ESS.1.4
    Use Kepler’s laws to predict the motion of orbiting objects in the solar system. Describe how orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system. Clarification Statements: Kepler’s laws apply to human-made satellites as well as planets, moons, and other objects. Calculations involving Kepler’s laws of orbital motions should not deal with more than two bodies, nor involve calculus.
  • HS.ESS.1.5
    Evaluate evidence of the past and current movements of continental and oceanic crust, the theory of plate tectonics, and relative densities of oceanic and continental rocks to explain why continental rocks are generally much older than rocks of the ocean floor. Clarification Statement: Examples include the ages of oceanic crust (less than 200 million years old) increasing with distance from mid-ocean ridges (a result of plate spreading at divergent boundaries) and the ages of North American continental crust (which can be older than 4 billion years) increasing with distance away from a central ancient core (a result of past plate interactions at convergent boundaries).
  • HS.ESS.2.2
    Analyze geoscience data to make the claim that one change to Earth’s hydrosphere can create feedbacks that cause changes to other Earth systems. Clarification Statement: Examples can include how decreasing the amount of glacial ice reduces the amount of sunlight reflected from Earth’s surface, increasing surface temperatures and further reducing the amount of ice; how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; and how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.
  • HS.ESS.2.3
    Use a model based on evidence of Earth’s interior to describe the cycling of matter due to the outward flow of energy from Earth’s interior and gravitational movement of denser materials toward the interior. Clarification Statements: Emphasis is on both a two-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by gravity and thermal convection. Examples of evidence include maps of Earth’s three-dimensional structure obtained from seismic waves, records of the rate of change of Earth’s magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth’s layers from high-pressure laboratory experiments.
  • HS.ESS.2.4
    Use a model to describe how variations in the flow of energy into and out of Earth’s systems over different time scales result in changes in climate. Analyze and interpret data to explain that long-term changes in Earth’s tilt and orbit result in cycles of climate change such as Ice Ages. Clarification Statement: Examples of the causes of climate change differ by timescale: large volcanic eruption and ocean circulation over 1–10 years; changes in human activity, ocean circulation, and solar output over tens to hundreds of years; changes to Earth’s orbit and the orientation of its axis over tens to hundreds of thousands of years; and long-term changes in atmospheric composition over tens to hundreds of millions of years. State Assessment Boundary: Changes in climate will be limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution in state assessment.
  • HS.ESS.2.6
    Use a model to describe cycling of carbon through the ocean, atmosphere, soil, and biosphere and how increases in carbon dioxide concentrations due to human activity have resulted in atmospheric and climate changes.

Same Level Standards:

  • 8.EE.A.1
    Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 3² x 3-5 = 3-3 = 1/33 = 1/27.
  • 8.EE.A.3
    Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 x 108 and the population of the world as 7 x 109, and determine that the world population is more than 20 times larger.
  • 8.ESS.2.1
    Use a model to illustrate that energy from Earth’s interior drives convection that cycles Earth’s crust, leading to melting, crystallization, weathering, and deformation of large rock formations, including generation of ocean sea floor at ridges, submergence of ocean sea floor at trenches, mountain building, and active volcanic chains. Clarification Statement: The emphasis is on large-scale cycling resulting from plate tectonics.
  • 8.ESS.2.6
    Describe how interactions involving the ocean affect weather and climate on a regional scale, including the influence of the ocean temperature as mediated by energy input from the Sun and energy loss due to evaporation or redistribution via ocean currents. Clarification Statement: A regional scale includes a state or multi-state perspective. State Assessment Boundary: Koppen Climate Classification names are not expected in state assessment.
  • 8.ESS.3.1
    Analyze and interpret data to explain that the Earth’s mineral and fossil fuel resources are unevenly distributed as a result of geologic processes. Clarification Statement: Examples of uneven distributions of resources can include where petroleum is generally found (locations of the burial of organic marine sediments and subsequent geologic traps), and where metal ores are generally found (locations of past volcanic and hydrothermal activity).
  • 8.ESS.3.5
    Examine and interpret data to describe the role that human activities have played in causing the rise in global temperatures over the past century. Clarification Statements: Examples of human activities include fossil fuel combustion, deforestation, and agricultural activity. Examples of evidence can include tables, graphs, and maps of global and regional temperatures; atmospheric levels of gases such as carbon dioxide and methane; and the rates of human activities.