Standards Map

Science and Technology/Engineering > Grade High School > Earth and Space Sciences

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Science and Technology/Engineering | Grade : High School

Discipline - Earth and Space Sciences

Core Idea - Earth's Place in the Universe

[HS.ESS.1.5] - Evaluate evidence of the past and current movements of continental and oceanic crust, the theory of plate tectonics, and relative densities of oceanic and continental rocks to explain why continental rocks are generally much older than rocks of the ocean floor. Clarification Statement: Examples include the ages of oceanic crust (less than 200 million years old) increasing with distance from mid-ocean ridges (a result of plate spreading at divergent boundaries) and the ages of North American continental crust (which can be older than 4 billion years) increasing with distance away from a central ancient core (a result of past plate interactions at convergent boundaries).


Resources:



Predecessor Standards:

  • 8.EE.A.4
    Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.
  • 6.PS.1.7
    Use a particulate model of matter to explain that density is the amount of matter (mass) in a given volume. Apply proportional reasoning to describe, calculate, and compare relative densities of different materials.
  • 8.ESS.2.1
    Use a model to illustrate that energy from Earth’s interior drives convection that cycles Earth’s crust, leading to melting, crystallization, weathering, and deformation of large rock formations, including generation of ocean sea floor at ridges, submergence of ocean sea floor at trenches, mountain building, and active volcanic chains. Clarification Statement: The emphasis is on large-scale cycling resulting from plate tectonics.

Successor Standards:

No Successor Standards found.

Same Level Standards:

  • RCA-ST.9-10.8
    Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem.
  • HS.ESS.1.4
    Use Kepler’s laws to predict the motion of orbiting objects in the solar system. Describe how orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system. Clarification Statements: Kepler’s laws apply to human-made satellites as well as planets, moons, and other objects. Calculations involving Kepler’s laws of orbital motions should not deal with more than two bodies, nor involve calculus.
  • HS.ESS.2.3
    Use a model based on evidence of Earth’s interior to describe the cycling of matter due to the outward flow of energy from Earth’s interior and gravitational movement of denser materials toward the interior. Clarification Statements: Emphasis is on both a two-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by gravity and thermal convection. Examples of evidence include maps of Earth’s three-dimensional structure obtained from seismic waves, records of the rate of change of Earth’s magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth’s layers from high-pressure laboratory experiments.