Standards Map

Science and Technology/Engineering > Grade 6 > Physical Science

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Science and Technology/Engineering | Grade : 6

Discipline - Physical Science

Core Idea - Matter and Its Interactions

[6.PS.1.7] - Use a particulate model of matter to explain that density is the amount of matter (mass) in a given volume. Apply proportional reasoning to describe, calculate, and compare relative densities of different materials.


Resources:



Predecessor Standards:

  • 5.MD.C.3
    Recognize volume as an attribute of solid figures and understand concepts of volume measurement.

Successor Standards:

  • 7.PS.3.4
    Conduct an investigation to determine the relationships among the energy transferred, how well the type of matter retains or radiates heat, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. State Assessment Boundary: Calculations of specific heat or the total amount of thermal energy transferred are not expected in state assessment.
  • 8.ESS.2.1
    Use a model to illustrate that energy from Earth’s interior drives convection that cycles Earth’s crust, leading to melting, crystallization, weathering, and deformation of large rock formations, including generation of ocean sea floor at ridges, submergence of ocean sea floor at trenches, mountain building, and active volcanic chains. Clarification Statement: The emphasis is on large-scale cycling resulting from plate tectonics.
  • 8.ESS.2.5
    Interpret basic weather data to identify patterns in air mass interactions and the relationship of those patterns to local weather. Clarification Statements: Data includes temperature, pressure, humidity, precipitation, and wind. Examples of patterns can include air masses flow from regions of high pressure to low pressure, and how sudden changes in weather can result when different air masses collide. Data can be provided to students (such as in weather maps, data tables, diagrams, or visualizations) or obtained through field observations or laboratory experiments. State Assessment Boundary: Specific names of cloud types or weather symbols used on weather maps are not expected in state assessment.
  • 8.PS.1.2
    Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. Clarification Statements: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with HCl. Properties of substances include density, melting point, boiling point, solubility, flammability, and odor.
  • 8.PS.1.4
    Develop a model that describes and predicts changes in particle motion, relative spatial arrangement, temperature, and state of a pure substance when thermal energy is added or removed. Clarification Statements: Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of pure substances could include water, carbon dioxide, and helium.
  • HS.ESS.1.5
    Evaluate evidence of the past and current movements of continental and oceanic crust, the theory of plate tectonics, and relative densities of oceanic and continental rocks to explain why continental rocks are generally much older than rocks of the ocean floor. Clarification Statement: Examples include the ages of oceanic crust (less than 200 million years old) increasing with distance from mid-ocean ridges (a result of plate spreading at divergent boundaries) and the ages of North American continental crust (which can be older than 4 billion years) increasing with distance away from a central ancient core (a result of past plate interactions at convergent boundaries).

Same Level Standards:

  • 6.RP.A.1
    Understand the concept of a ratio including the distinctions between part:part and part:whole and the value of a ratio; part/part and part/whole. Use ratio language to describe a ratio relationship between two quantities. For example: The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every two wings there was one beak; For every vote candidate A received, candidate C received nearly three votes, meaning that candidate C received three out of every four votes or ¾ of all votes.