Standards Map

Science and Technology/Engineering > Grade High School > Chemistry

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Science and Technology/Engineering | Grade : High School

Discipline - Chemistry

Core Idea - Matter and Its Interactions

[HS.CHEM.1.2] - Use the periodic table model to predict and design simple reactions that result in two main classes of binary compounds, ionic and molecular. Develop an explanation based on given observational data and the electronegativity model about the relative strengths of ionic or covalent bonds. Clarification Statements: Simple reactions include synthesis (combination), decomposition, single displacement, double displacement, and combustion. Predictions of reactants and products can be represented using Lewis dot structures, chemical formulas, or physical models. Observational data include that binary ionic substances (i.e., substances that have ionic bonds), when pure, are crystalline salts at room temperature (common examples include NaCl, KI, Fe2O3); and substances that are liquids and gases at room temperature are usually made of molecules that have covalent bonds (common examples include CO2, N2, CH4, H2O, C8H18).


Resources:



Predecessor Standards:

No Predecessor Standards found.

Successor Standards:

No Successor Standards found.

Same Level Standards:

  • RCA-ST.9-10.7
    Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
  • AI.N-Q.A.1
    Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*
  • AI.N-Q.A.3
    Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*
  • HS.CHEM.1.1
    Use the periodic table as a model to predict the relative properties of main group elements, including ionization energy and relative sizes of atoms and ions, based on the patterns of electrons in the outermost energy level of each element. Use the patterns of valence electron configurations, core charge, and Coulomb’s law to explain and predict general trends in ionization energies, relative sizes of atoms and ions, and reactivity of pure elements. Clarification Statement: Size of ions should be relevant only for predicting strength of ionic bonding. State Assessment Boundary: State assessment will be limited to main group (s and p block) elements.
  • HS.CHEM.1.7
    Use mathematical representations and provide experimental evidence to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. Use the mole concept and proportional relationships to evaluate the quantities (masses or moles) of specific reactants needed in order to obtain a specific amount of product. Clarification Statements: Mathematical representations include balanced chemical equations that represent the laws of conservation of mass and constant composition (definite proportions), mass-to-mass stoichiometry, and calculations of percent yield. Evaluations may involve mass-to-mass stoichiometry and atom economy comparisons, but only for single-step reactions that do not involve complexes.
  • HS.CHEM.1.10
    Use an oxidation-reduction reaction model to predict products of reactions given the reactants, and to communicate the reaction models using a representation that shows electron transfer (redox). Use oxidation numbers to account for how electrons are redistributed in redox processes used in devices that generate electricity or systems that prevent corrosion.* Clarification Statement: Reactions are limited to simple oxidation-reduction reactions that do not require hydronium or hydroxide ions to balance half-reactions.
  • HS.CHEM.2.7
    Construct a model to explain how ions dissolve in polar solvents (particularly water). Analyze and compare solubility and conductivity data to determine the extent to which different ionic species dissolve. Clarification Statement: Data for comparison should include different concentrations of solutions with the same ionic species, and similar ionic species dissolved in the same amount of water.