Standards Map

Science and Technology/Engineering > Grade High School > Chemistry

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Science and Technology/Engineering | Grade : High School

Discipline - Chemistry

Core Idea - Matter and Its Interactions

[HS.CHEM.1.10] - Use an oxidation-reduction reaction model to predict products of reactions given the reactants, and to communicate the reaction models using a representation that shows electron transfer (redox). Use oxidation numbers to account for how electrons are redistributed in redox processes used in devices that generate electricity or systems that prevent corrosion.* Clarification Statement: Reactions are limited to simple oxidation-reduction reactions that do not require hydronium or hydroxide ions to balance half-reactions.


Resources:



Predecessor Standards:

No Predecessor Standards found.

Successor Standards:

No Successor Standards found.

Same Level Standards:

  • RCA-ST.9-10.7
    Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
  • HS.CHEM.1.2
    Use the periodic table model to predict and design simple reactions that result in two main classes of binary compounds, ionic and molecular. Develop an explanation based on given observational data and the electronegativity model about the relative strengths of ionic or covalent bonds. Clarification Statements: Simple reactions include synthesis (combination), decomposition, single displacement, double displacement, and combustion. Predictions of reactants and products can be represented using Lewis dot structures, chemical formulas, or physical models. Observational data include that binary ionic substances (i.e., substances that have ionic bonds), when pure, are crystalline salts at room temperature (common examples include NaCl, KI, Fe2O3); and substances that are liquids and gases at room temperature are usually made of molecules that have covalent bonds (common examples include CO2, N2, CH4, H2O, C8H18).