Standards Map

Science and Technology/Engineering > Grade High School > Chemistry

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Science and Technology/Engineering | Grade : High School

Discipline - Chemistry

Core Idea - Motion and Stability: Forces and Interactions

[HS.CHEM.2.7] - Construct a model to explain how ions dissolve in polar solvents (particularly water). Analyze and compare solubility and conductivity data to determine the extent to which different ionic species dissolve. Clarification Statement: Data for comparison should include different concentrations of solutions with the same ionic species, and similar ionic species dissolved in the same amount of water.


Resources:



Predecessor Standards:

  • 7.PS.2.5
    Use scientific evidence to argue that fields exist between objects with mass, between magnetic objects, and between electrically charged objects that exert force on each other even though the objects are not in contact. Clarification Statement: Emphasis is on evidence that demonstrates the existence of fields, limited to gravitational, electric, and magnetic fields. State Assessment Boundary: Calculations of force are not expected in state assessment.

Successor Standards:

No Successor Standards found.

Same Level Standards:

  • HS.CHEM.1.2
    Use the periodic table model to predict and design simple reactions that result in two main classes of binary compounds, ionic and molecular. Develop an explanation based on given observational data and the electronegativity model about the relative strengths of ionic or covalent bonds. Clarification Statements: Simple reactions include synthesis (combination), decomposition, single displacement, double displacement, and combustion. Predictions of reactants and products can be represented using Lewis dot structures, chemical formulas, or physical models. Observational data include that binary ionic substances (i.e., substances that have ionic bonds), when pure, are crystalline salts at room temperature (common examples include NaCl, KI, Fe2O3); and substances that are liquids and gases at room temperature are usually made of molecules that have covalent bonds (common examples include CO2, N2, CH4, H2O, C8H18).