Standards Map

Science and Technology/Engineering > Grade 6 > Physical Science

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Science and Technology/Engineering | Grade : 6

Discipline - Physical Science

Core Idea - Motion and Stability: Forces and Interactions

[6.PS.2.4] - Use evidence to support the claim that gravitational forces between objects are attractive and are only noticeable when one or both of the objects have a very large mass. Clarification Statement: Examples of objects with very large masses include the Sun, Earth, and other planets. State Assessment Boundary: Newton’s law of gravitation or Kepler’s laws are not expected in state assessment.


Resources:



Predecessor Standards:

  • 5.PS.2.1
    Support an argument with evidence that the gravitational force exerted by Earth on objects is directed toward Earth’s center. State Assessment Boundary: Mathematical representations of gravitational force are not expected in state assessment.

Successor Standards:

  • 7.ESS.2.4
    Develop a model to explain how the energy of the Sun and Earth’s gravity drive the cycling of water, including changes of state, as it moves through multiple pathways in Earth’s hydrosphere. Clarification Statement: Examples of models can be conceptual or physical. State Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not expected in state assessment.
  • 7.PS.3.2
    Develop a model to describe the relationship between the relative positions of objects interacting at a distance and their relative potential energy in the system. Clarification Statements: Examples of objects within systems interacting at varying distances could include Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a stream of water. Examples of models could include representations, diagrams, pictures, and written descriptions of systems. State Assessment Boundaries: State assessment will be limited to electric, magnetic, and gravitational interactions and to interactions of two objects at a time. Calculations of potential energy are not expected in state assessment.
  • 8.ESS.1.2
    Explain the role of gravity in ocean tides, the orbital motions of planets, their moons, and asteroids in the solar system. State Assessment Boundary: Kepler’s laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth are not expected in state assessment.
  • 8.PS.2.2
    Provide evidence that the change in an object’s speed depends on the sum of the forces on the object (the net force) and the mass of the object. Clarification Statement: Emphasis is on balanced (Newton’s first law) and unbalanced forces in a system, qualitative comparisons of forces, mass, and changes in speed (Newton’s second law) in one dimension. State Assessment Boundaries: State assessment will be limited to forces and changes in motion in one dimension in an inertial reference frame and to change in one variable at a time. The use of trigonometry is not expected in state assessment.
  • HS.PHY.2.4
    Use mathematical representations of Newton’s law of gravitation and Coulomb’s law to both qualitatively and quantitatively describe and predict the effects of gravitational and electrostatic forces between objects. Clarification Statement: Emphasis is on the relative changes when distance, mass or charge, or both are changed. State Assessment Boundaries: State assessment will be limited to systems with two objects. Permittivity of free space is not expected in state assessment.

Same Level Standards:

  • WCA.6-8.1
    Write arguments focused on discipline-specific content.