Science and Technology/Engineering | Grade : High School
Discipline - Biology
Core Idea - From Molecules to Organisms: Structures and Processes
[HS.LS.1.2] - Develop and use a model to illustrate the key functions of animal body systems, including (a) food digestion, nutrient uptake, and transport through the body; (b) exchange of oxygen and carbon dioxide; (c) removal of wastes; and (d) regulation of body processes. Clarification Statement: Emphasis is on the primary function of the following body systems (and structures): digestive (mouth, stomach, small intestine [villi], large intestine, pancreas), respiratory (lungs [alveoli], diaphragm), circulatory (heart, veins, arteries, capillaries), excretory (kidneys, liver, skin), and nervous (neurons, brain, spinal cord). State Assessment Boundary: Chemical reactions in cells, details of particular structures (such as the structure of the neuron), or the identification of specific proteins in cells are not expected in state assessment.
[RCA-ST.9-10.7] -
Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
[HS.LS.1.3] -
Provide evidence that homeostasis maintains internal body conditions through both body-wide feedback mechanisms and small-scale cellular processes. Clarification Statements: Feedback mechanisms include the promotion of a stimulus through positive feedback (e.g., injured tissues releasing chemicals in blood that activate platelets to facilitate blood clotting), and the inhibition of stimulus through negative feedback (e.g., insulin reducing high blood glucose to normal levels). Cellular processes include (a) passive transport and active transport of materials across the cell membrane to maintain specific concentrations of water and other nutrients in the cell and (b) the role of lysosomes in recycling wastes, macromolecules, and cell parts into monomers. State Assessment Boundary: Interactions at the molecular level (for example, how insulin is produced) are not expected in state assessment.
[HS.LS.1.4] -
Construct an explanation using evidence for why the cell cycle is necessary for the growth, maintenance, and repair of multicellular organisms. Model the major events of the cell cycle, including (a) cell growth and DNA replication, (b) separation of chromosomes (mitosis), and (c) separation of cell contents. State Assessment Boundary: Specific gene control mechanisms or specific details of each event (e.g., phases of mitosis) are not expected in state assessment.