Science and Technology/Engineering | Grade : High School
Discipline - Chemistry
Core Idea - Energy
[HS.CHEM.3.4] - Provide evidence from informational text or available data to illustrate that the transfer of energy during a chemical reaction in a closed system involves changes in energy dispersal (enthalpy change) and heat content (entropy change) while assuming the overall energy in the system is conserved. State Assessment Boundary: Calculations involving Gibbs free energy are not expected in state assessment.
[WCA.9-10.9] -
Draw evidence from informational texts to support analysis, interpretation, reflection, and research. (See grades 9-10 Reading Standard 1 for more on the use of textual evidence.)
[HS.CHEM.1.4] -
Develop a model to illustrate the energy transferred during an exothermic or endothermic chemical reaction based on the bond energy difference between bonds broken (absorption of energy) and bonds formed (release of energy). Clarification Statement: Examples of models may include molecular-level drawings and diagrams of reactions or graphs showing the relative energies of reactants and products. State Assessment Boundary: Calculations using Hess’s law are not expected in state assessment.
[HS.PHY.3.1] -
Use algebraic expressions and the principle of energy conservation to calculate the change in energy of one component of a system when the change in energy of the other component(s) of the system, as well as the total energy of the system including any energy entering or leaving the system, is known. Identify any transformations from one form of energy to another, including thermal, kinetic, gravitational, magnetic, or electrical energy, in the system. Clarification Statement: Systems should be limited to two or three components and to thermal energy; kinetic energy; or the energies in gravitational, magnetic, or electric fields.