Standards Map

Mathematics > Course Model Mathematics II (Integrated Pathway) > Reasoning with Equations and Inequalities

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Mathematics | Course : Model Mathematics II (Integrated Pathway)

Domain - Reasoning with Equations and Inequalities

Cluster - Solve systems of equations.

[MII.A-REI.C.7] - Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x2 + y2 = 3.


Resources:


  • Linear equation
    Any equation that can be written in the form Ax + By + C = 0 where A and B cannot both be 0. The graph of such an equation is a line.
  • Quadratic equation
    An equation that includes only second degree polynomials. Some examples are y = 3x2 – 5x2 + 1, x2 + 5xy + y2 = 1, and 1.6a2 +5.9a – 3.14 = 0.
  • Variable
    A quantity that can change or that may take on different values. Refers to the letter or symbol representing such a quantity in an expression, equation, inequality, or matrix.

Predecessor Standards:

  • 8.EE.C.8
    Analyze and solve pairs of simultaneous linear equations.
  • 8.EE.C.8.a
    Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
  • 8.EE.C.8.b
    Solve systems of two linear equations in two variables algebraically (using substitution and elimination strategies), and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6.

Successor Standards:

No Successor Standards found.

Same Level Standards:

  • MI.A-CED.A.3
    Represent constraints by linear equations or inequalities, and by systems of linear equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.* For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
  • MI.A-REI.C.6
    Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
  • MI.A-REI.D.10
    Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). Show that any point on the graph of an equation in two variables is a solution to the equation.
  • MI.A-REI.D.11
    Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions and/or make tables of values. Include cases where f(x) and/or g(x) are linear and exponential functions.*
  • MII.A-REI.B.4.b
    Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.
  • MII.G-GPE.A.1
    Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
  • MII.G-GPE.B.4
    Use coordinates to prove simple geometric theorems algebraically including the distance formula and its relationship to the Pythagorean Theorem. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).