Note: Click any standard to move it to the center of the map.
Mathematics | Grade : 6
Domain - Statistics and Probability
Cluster - Summarize and describe distributions.
[6.SP.B.5.c] - Giving quantitative measures of center (median, and/or mean) and variability (range and/or interquartile range), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
- Interquartile range
A measure of variation in a set of numerical data, the interquartile range is the distance between the first and third quartiles of the data set. Example: For the data set {1, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the interquartile range is 15 – 6 = 9. - Mean
A measure of center in a set of numerical data, computed by adding the values in a list and then dividing by the number of values in the list. Example: For the data set {1, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the mean is 21. - Median
A measure of center in a set of numerical data. The median of a list of values is the value appearing at the center of a sorted version of the list; or the mean of the two central values, if the list contains an even number of values. Example: For the data set {2, 3, 6, 7, 10, 12, 14, 15, 22, 90}, the median is 11.
[AII.S-ID.A.4] -
Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.*
[AII.S-IC.B.6] -
Evaluate reports based on data.*
[MIII.S-ID.A.4] -
Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.*
[MIII.S-IC.B.6] -
Evaluate reports based on data.*