Standards Map

Science and Technology/Engineering > Grade High School > Chemistry

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Science and Technology/Engineering | Grade : High School

Discipline - Chemistry

Core Idea - Matter and Its Interactions

[HS.CHEM.1.6] - Design ways to control the extent of a reaction at equilibrium (relative amount of products to reactants) by altering various conditions using Le Chatelier’s principle. Make arguments based on kinetic molecular theory to account for how altering conditions would affect the forward and reverse rates of the reaction until a new equilibrium is established.* Clarification Statements: Conditions that can be altered to affect the extent of a reaction include temperature, pressure, and concentrations of reactants. Conditions that can be altered to affect the rates of a reaction include temperature, pressure, concentrations of reactants, agitation, particle size, surface area, and addition of a catalyst. State Assessment Boundaries: Calculations of equilibrium constants or concentrations are not expected in state assessment. State assessment will be limited to simple reactions in which there are only two reactants and to specifying the change in only one variable at a time.


Resources:



Predecessor Standards:

No Predecessor Standards found.

Successor Standards:

No Successor Standards found.

Same Level Standards:

  • RCA-ST.9-10.3
    Follow precisely a complex multi-step procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
  • HS.CHEM.1.5
    Construct an explanation based on kinetic molecular theory for why varying conditions influence the rate of a chemical reaction or a dissolving process. Design and test ways to slow down or accelerate rates of processes (chemical reactions or dissolving) by altering various conditions.* Clarification Statements: Explanations should be based on three variables in collision theory: (a) quantity of collisions per unit time, (b) molecular orientation on collision, and (c) energy input needed to induce atomic rearrangements. Conditions that affect these three variables include temperature, pressure, concentrations of reactants, agitation, particle size, surface area, and addition of a catalyst. State Assessment Boundary: State assessment will be limited to simple reactions in which there are only two reactants and to specifying the change in only one variable at a time.
  • HS.CHEM.1.9
    Relate the strength of an aqueous acidic or basic solution to the extent of an acid or base reacting with water as measured by the hydronium ion concentration (pH) of the solution. Make arguments about the relative strengths of two acids or bases with similar structure and composition. Clarification Statements: Reactions are limited to Arrhenius and Bronsted-Lowry acid-base reaction patterns with monoprotic acids. Comparisons of relative strengths of aqueous acid or base solutions made from similar acid or base substances is limited to arguments based on periodic properties of elements, the electronegativity model of electron distribution, empirical dipole moments, and molecular geometry. Acid or base strength comparisons are limited to homologous series and should include dilution and evaporation of water.