Mathematics | Course : Model Precalculus (Advanced Course)
Domain - Arithmetic with Polynomials and Rational Expressions
Cluster - Rewrite rational expressions.
[PC.A-APR.D.7] - (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
[AI.A-SSE.A.2] -
Use the structure of an expression to identify ways to rewrite it. For example, see (x + 2)2 – 9 as a difference of squares that can be factored as ((x + 2) + 3)((x + 2 ) – 3).
[AI.A-APR.A.1] -
Understand that polynomials form a system analogous to the integers, namely, they are closed under certain operations.
[AII.A-APR.D.6] -
Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
[MII.A-SSE.A.2] -
Use the structure of an expression to identify ways to rewrite it. For example, see (x + 2)2 – 9 as a difference of squares that can be factored as ((x + 2) + 3)((x + 2) – 3).
[MIII.A-APR.D.6] -
Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.