Standards Map

Mathematics > Course Model Algebra I (Traditional Pathway) > Seeing Structure in Expressions

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Mathematics | Course : Model Algebra I (Traditional Pathway)

Domain - Seeing Structure in Expressions

Cluster - Write expressions in equivalent forms to solve problems.

[AI.A-SSE.B.3] - Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.


Resources:


  • Expression
    A mathematical phrase that combines operations, numbers, and/or variables (e.g., 32 ÷ a).

Predecessor Standards:

  • 7.EE.A.1
    Apply properties of operations to add, subtract, factor, and expand linear expressions with rational coefficients. For example, 4x + 2 = 2(2x +1) and -3(x – 5/3) = -3x + 5.
  • 7.EE.A.2
    Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + 0.05a = 1.05a means that “increase by 5%” is the same as “multiply by 1.05.” A shirt at a clothing store is on sale for 20% off the regular price, “p”. The discount can be expressed as 0.2p. The new price for the shirt can be expressed as p – 0.2p or 0.8p.
  • 8.F.B.4
    Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Successor Standards:

No Successor Standards found.

Same Level Standards:

  • HS.PHY.2.1
    Analyze data to support the claim that Newton’s second law of motion is a mathematical model describing change in motion (the acceleration) of objects when acted on by a net force. Clarification Statements: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, and a moving object being pulled by a constant force. Forces can include contact forces, including friction, and forces acting at a distance, such as gravity and magnetic forces. State Assessment Boundary: Variable forces are not expected in state assessment.
  • HS.PHY.4.1
    Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling within various media. Recognize that electromagnetic waves can travel through empty space (without a medium) as compared to mechanical waves that require a medium. Clarification Statements: Emphasis is on relationships when waves travel within a medium, and comparisons when a wave travels in different media. Examples of situations to consider could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the Earth. Relationships include v = λf, T = 1/f, and the qualitative comparison of the speed of a transverse (including electromagnetic) or longitudinal mechanical wave in a solid, liquid, gas, or vacuum. State Assessment Boundary: Transitions between two media are not expected in state assessment.