Standards Map

Mathematics > Course Model Algebra I (Traditional Pathway) > Reasoning with Equations and Inequalities

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Mathematics | Course : Model Algebra I (Traditional Pathway)

Domain - Reasoning with Equations and Inequalities

Cluster - Represent and solve equations and inequalities graphically.

[AI.A-REI.D.11] - Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions and make tables of values. Include cases where f(x) and/or g(x) are linear and exponential functions.*


Resources:


  • Function
    A mathematical relation for which each element of the domain corresponds to exactly one element of the range.

Predecessor Standards:

  • 8.EE.C.7.a
    Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers).
  • 8.EE.C.7.b
    Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
  • 8.F.A.3
    Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s² giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

Successor Standards:

No Successor Standards found.

Same Level Standards:

  • AI.A-REI.C.7
    Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = –3x and the circle x2 + y2 = 3.
  • AI.A-REI.D.10
    Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). Show that any point on the graph of an equation in two variables is a solution to the equation.
  • AI.A-REI.D.12
    Graph the solutions of a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set of a system of linear inequalities in two variables as the intersection of the corresponding half-planes.