Standards Map

Mathematics > Grade 8 > Expressions and Equations

Accessibility Mode: Note: You are viewing this information in accessibility mode. To view the map, enlarge your window or use a larger device.

Mathematics | Grade : 8

Domain - Expressions and Equations

Cluster - Understand the connections between proportional relationships, lines, and linear equations.

[8.EE.B.6] - Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.


Resources:


  • Coordinate plane
    A plane in which a point is represented using two coordinates that determine the precise location of the point. In the Cartesian plane, two perpendicular number lines are used to determine the locations of points. In the polar coordinate plane, points are determined by their distance along a ray through that point and the origin, and the angle that ray makes with a pre- determined horizontal axis.

Predecessor Standards:

  • 7.RP.A.2
    Recognize and represent proportional relationships between quantities.
  • 7.G.A.1
    Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

Successor Standards:

  • AI.A-REI.D.10
    Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). Show that any point on the graph of an equation in two variables is a solution to the equation.
  • GEO.G-GPE.B.4
    Use coordinates to prove simple geometric theorems algebraically, including the distance formula and its relationship to the Pythagorean Theorem. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).
  • GEO.G-GPE.B.5
    Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
  • MI.A-REI.D.10
    Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). Show that any point on the graph of an equation in two variables is a solution to the equation.
  • MI.G-GPE.B.5
    Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
  • MII.G-GPE.B.4
    Use coordinates to prove simple geometric theorems algebraically including the distance formula and its relationship to the Pythagorean Theorem. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2).

Same Level Standards:

  • 8.EE.B.5
    Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
  • 8.EE.C.8
    Analyze and solve pairs of simultaneous linear equations.
  • 8.F.A.2
    Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
  • 8.F.A.3
    Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s² giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.
  • 8.G.A.5
    Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.