Mathematics | Grade : 3
Domain - Operations and Algebraic Thinking
Cluster - Represent and solve problems involving multiplication and division.
[3.OA.A.1] - Interpret products of whole numbers, e.g., interpret 5 x 7 as the total number of objects in five groups of seven objects each. For example, describe a context in which a total number of objects can be expressed as 5 x 7.
[3.OA.A.2] -
Interpret whole-number quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8.
[3.OA.A.3] -
Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. See Glossary, Table 2
[3.OA.B.5] -
Apply properties of operations to multiply. For example: When multiplying numbers order does not matter. If 6 x 4 = 24 is known, then 4 x 6 = 24 is also known (Commutative property of multiplication); The product 3 x 5 x 2 can be found by 3 x 5 = 15 then 15 x 2 = 30, or by 5 x 2 = 10 then 3 x 10 = 30 (Associative property of multiplication); When multiplying two numbers either number can be decomposed and multiplied; one can find 8 x 7 by knowing that 7 = 5 + 2 and that 8 x 5 = 40 and 8 x 2 = 16, resulting in 8 x (5 + 2) = (8 x 5) + (8 x 2) = 40 + 16 = 56 (Distributive property); When a number is multiplied by 1 the result is the same number (Identity property of 1 for multiplication). [Note: Students need not use formal terms for these properties. Students are not expected to use distributive notation]
[3.OA.B.6] -
Understand division as an unknown-factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.